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The contact problem of the motion of a punch taking into account the heat released due to friction 

between the punch and a very thick elastic strip is considered. The contact problem of the theory of 

elasticity regarding a moving punch was previously investigated both ignoring 11. 21 and taking into 

account [3,4] the forces of friction and the heat release. Here, unlike [3.4], when solving the free quasi - 
stationary problem of thermoelasticity in a moving system of coordinates a relation is proposed 

between the coefficient of friction and the temperature. Particular attention is given to the problem of 

the possibility of a thermal explosion [S-11] or a sharp change (a bifurcation) in the contact 

temperatures. It is shown that a loss in the quasi-stationary thermoelastic stability occurs if the 

coefficient of friction increases linearly with the temperature. The proposed model can explain, to a 

first approximation, the avalanche-type wear of different moving components, for example, thin piston 

rings, due to their overheating. 

l. Suppose an absolutely rigid punch with a flat base of width 2a (see Fig. 1) moves with 
constant velocity 2) in the direction of the x axis over the upper boundary y = h of an elastic 
strip of thickness h. The lower boundary of the strip y= 0 lies without friction on an 
undeformed base. We will solve the problem in a moving system of coordinates x’ = X- ut, 
y’= y, corm ec e t d with the punch (the primes will henceforth be omitted). The punch is pressed 
against the strip with a force p per unit length of the punch, applied with an eccentricity e. 
Coulomb friction forces z,, = kq, where q=q(x) =-oy(y=h, IxKa) is the contact pressure, 
occur in the region of contact between the punch and the strip. 

Due to friction in the contact area a quantity of heat 

e = llTxy (1.1) 

is released in unit time per unit area [7], which leads to heating of the surface of the strip, and 
also of the whole punch up to a temperature T,(X) = 7(x, /I) (Ix I%a), which exceeds the 
temperature of the lower boundary of the strip T, = 0. We will assume here that on the lower 
boundary of the strip, and also outside the region of contact, the temperature remains that of 
the surrounding medium, which we will also take as the origin for the temperature readings. 
Hence, heat flow occurs through the strip, which, for y = h is equal to [12] 

Q=LaTfdy (1.2) 

where h, is the thermal conductivity of the material of the elastic strip. 
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Assuming that the heat conduction process is quasi-stationary with respect to a moving 
system of coordinates [ 13). WC obtain the following heat-conduction equation 

AT+2dT/&=O, a=u/2a, { i.3) 

where a, is the thermal diffusivity of the material of the strip, with the following boundary 
conditions 

y=O:T=O 

y=h: T=O, lxl>a; aT/ay=Q/h,, IxISa 

By searching for a solution of boundary-value problem (1.3), (1.4) in the form 

i. 1.4) 

U(a) = (f u(x)e’“f.ix, u(x) = eO”T,(x> 
--(1 

(1.5) 

assuming the function II(X) to be continuous at the points .~=+a, we obtain the following 
equation connecting the functions 11 (x) and Q(X) 

(i.6) 

K,,(r)7 w sin afda, 
0 a 

&(a) = xLG7 cth &FZh 

To determine the stress-strain state of the strip (plane strain) we will use the Lame- 
Neumann equations of linear uncoupled thermoelasticity [12] in a moving system of coor- 
dinates, neglecting the inertial terms. We will assume that the velocity u is less than the 
velocities c,, c2 and c, of the longitudinal, transverse and Rayleigh waves in the elastic strip. 
respectively, i.e. v CC, < c2 < c,,where c: = 2G(l- v)[p(l - 2v)]-*, cz = Gp-‘. and p, G and v are the 
density, shear modulus and Poisson’s ratio of the material of the strip, respectively. We will 
seek a solution of the Lame-Neumann equations in the form [2] 

(1.7) 

Then, neglecting the effect of the friction forces on the normal displacements under the 
punch [6], we have the following boundary-value problem 

q :@=PT, q 4’=0 

y=o: UY =,cxy =o 

y=h: o?,=O, Ixl>a; 0,=-q(x), IxlSa; TV=0 
(1.8) 

•~=~fa~/a~*+a~/a~~, E;=I-IJ*I~,~, n=l, 2 

where p = a,(1 + v)/(l- v), and a, is the coefficient of linear expansion of the material of the 
strip. 

It follows from Hooke’s law and Eqs (1.8) that 
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Fig. 1. 

O;Y 2 a2<c, za2v z,=2a2@ -=-(l+EQ- -, 
2 a2y 

G axay G 
--(l+E2kg 
axay (1.9) 

We wilt represent the solution of boundary-value problem (1.8), (1.9) in the form of Fourier 
integrals 

cptx. y)= g_ (PO a, Y ’ r [ ( )+ pP%p, (a, yWia”da 

Wx, ~)=;i;;__w~ at Y e l fo ( ) -*da 
(1.10) 

From the boundary conditions (1.8) with y = 0 we obtain that 

‘pl (a, y) = 
V(a) !c2 sh tc,y - rcl sh ic2y 

tc2 sh ~~~ I+fC f 

ICI =&zz K2 =q(a-iw) 

%(a, Y) = A(a)ch(E,ay), vo(a, y) = B(a)s h(e2ay) 

(1.11) 

By determining the unknown functions A(a), B(a) from the bounda~ conditions (1.8) with 
y=/z and sh’ft 1 ing the contour of integration in the integral containing the function cp,(a, y) 
(using the analyticity of the corresponding functions in the strip -w < Ima < 0), we obtain an 
integral equation of the form (u, = -6, y = h, Ix Ik a) 

&(a)= 
y2 We,~)~(ez~) (I +&;)2 1-E; 

thf&,@JG - YI Wa,d) * YI = &$, ’ Y2 =r 
2 

(1.12) 

L?(aj= P(l+a~)Y~th&~) K[cth(Kh)-cosechi~)sech(e,ah)]-E,ath(e,uh) 
E2 (a(1 - Ef ) + i2o)a. th(&,M) - yI th(qxh) (1.13) 
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When p= 0. integral equation (1.12). (1.13) is identical with that obtained previously 111 12, 
p. 2891. It can be shown that when u<c,, the denominator in (I .13) for iA,2(aj is positive and 
regular for all a > 0, since the velocity of the Rayleigh wave U<C, corresponds to the value 
Yl = 1 PI. 

Taking the relation Q(x) = kuq(s) (lx ISO) into account, we have a system 01 two Integral 
equations (1.6) and (1.12) for determining the functions z!(s) and q(x). Moreover. the 
following two integral conditions of equilibrium of the punch must obviously be satisfied 

f q(x)& = P, 4 xq(x)dx = Pe [ 1.141 
-0 --II 

2. We will assume that the coefficient of friction depends linearly on the contact lemperaturc 
‘K(x) (Ix k a), i.e. taking (1.5) into account we have 

k = k(K) = k, +k*fk?-wxu(x) (2.1) 

where k, and k, are certain constants which depend on the materials of the rubbing pair (the 
punch and the strip). 

Then, in new dimensionless notation we have 

x’=xIa, &‘=(/a, w’=wh, 6’=6/a, h=hla 

q’(x’) = q(x) / G, u,,(x’) = ct.u(x), 01’ = ah, K’ = ti 

G:(a) = &(a’) (n = 0, 1, 2), E = a,uGa / h, 

k;=k,E, k.$=kZt$/a,, P’=PIGa, e’=ela 

and we can write the integral equations (1.6). (1.12) and (1.13) in the form (omitting the primes 
in (2.2)) 

i ~I&(QK~ 2 d& = -x(kIeuu" + b+(x))q(x), (1x1s 1) ( 1 (2.3) 

(2.4) 

We will investigate the system of non-linear equations (2.3) and (2.4) asymptotically as 
h + 00, i.e. for the case of a relatively thick strip (hla%=l). Using the well-known integrals [2] 

7 emu 

0 
-CoSUtdu=Inltl, i sinutdu=f 

U 
(2.5) 

we can separate the principal singular terms in the kernels K,(Z) (n = 0. 1, 2) of Eqs (2.3) and 
(2.4). After differentiating Eq. (2.4) with respect to x. we can represent the system (2.3) and 
(2.4) as h -+ 00 in the following form 

] a& = -n(k, + k,u,(x))q(x), (1x1s 1) 
-1 5-x 

(2.6) 

1 q(5)+ c*u,m 
-1 5-x 

cg = 0, c* = a”:‘l-y$, 
l 

From (2.7) we obtain that [2] 

(2.7) 
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q(x)+C,u,,(x)= RI- (2.8) 

where the constant R > 0 can obviously be expressed in terms of the force P and the mean 
contact temperature 

11, = 4 
-1 

u&w& R=(P+C*u,)/x (2.9) 

We expressed the function q(x) in terms of r_iaf.x) using (2.8) and substitute it into Eq. (2.6). 
Now regarding Eq. (26) as a Prandtl-type integro-differential equation in the function U,,(X) 
and employing the well-known method from [2, p. 2061, we can reduce it to the following 
equivalent Hammerstein integral equation 

(2‘11) 

We will investigate the possibility of the “branching” of the solutions from the known 
solution I&(X) of Eq. (2.10) (a bifurcation point) [14]. To do this we will replace the required 
function in (2.10) in accordance with the formula ~~~~=~~~)+z~~~) and we will take the 
Frechet differential when y(x) = 0 of the Hammerstein operator in the integraf equation of the 
function Y(X). We obtain the following linear homogeneous integral equation 

w-g I h ! E(S* x)y(S)WS)dS= 0. lxlC 1 (2.12) 

(2.13) 

Suppose kI =uk,, u= cons& and the force P is so large that the condition y(Q>O(lt kl) is 
satisfied for the function (2.13). Then Eq. (2.12) can be considered in the space Lt(-1, 1) with 
weight y(T;), where it is an integral equation with a filbert-Schmidt kernef, which, moreover, 
is a positive-definite kernel. Consequently, ah the characteristic numbers k2 = I%, (n = 1, 2, . . .>, 
corresponding to Eq. (2.12) are positive. Each such odd-multiple (in particular, simple) 
number h, will be the required bifurcation point [14]. 

We wifl now approximate the function q(.xf by the expression P/(d(l -.x2)), as was done in 
f6], i.e. we will put C * - 0. Taking into account the spectra1 relation [15] 

(2.14) 

where U,_I(x) are Chebyshev polynomials of the second kind, the solution of Eq- (2.10) with 
C* = 0 can be represented in the form 

Tfte free term in (2.10) can also be expanded in a series in Chebyshev polynomials 
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k,P ’ F(t, x) 
2rc2 1, m 4 = J1-x2 “;, G’,-I(x) (2.16) 

where the coefficients a, can be found from the condition 

The unknown constants b,, in expansion (2.15) can be found from the formulae 

b,, =muzn l(xn-k2P) (n=l, 2,...) (2.17) 

It follows from (2.17) that the existence of a quasi-stationary heat-conduction mode becomes 
impossible when k,P = m (n = 1, 2, . . .). Hence. changing to dimensional quantities, we obtain 
the critical velocity of motion of the punch 

A* 1-v 
2)“=nnl+v Pa,k, 

(n = 1, 2,...) (2.18) 

Hence, a thermal explosion can only occur when k, > 0, i.e. when the coefficient of friction 
increases linearly with the temperature. A similar result was obtained when considering other 
problems in [6-91. It can be seen from (2.18) that the worse the thermal conductivity of the 
elastic strip and the larger the force pressing down on the moving punch, the lower the 
threshold of the first critical velocity u,. 
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